
CodeAIR Python Code By Mission

Mission 2 – Introducing CodeAIR

from codeair import * Import the codeair library; all built-in code specific to CodeAIR

leds.set(num, brightness)
leds.set(0, 50)

Sets the user LED at a brightness level.
In this example, LED 0 is set to 50 percent brightness

Mission 3 – Pre-Flight Check

from time import sleep Import the time library to access built-in timing functions like sleep

leds.set(0, 0) Turn off an led; use a brightness of 0

leds.set(0, 50)
sleep(1)
leds.set(0, 0)
sleep(1)

Blink an LED for 1 second intervals.

while True: Infinite loop (instruction ends with a colon (:) and block underneath is
indented)

speaker.beep(frequency, duration)
speaker.beep(440, 200)

Play a note (or sound) using CodeAIR’s speaker
In this example, the frequency is 400 and the duration is 200 ms

D5 = 587 Constant definition

leds.set_status(50) A single LED positioned near the USB connector. The command needs
a single argument for brightness.

COLOR_LIST = (BLACK, BROWN, RED,
ORANGE, YELLOW, GREEN, BLUE, PURPLE,
GRAY, WHITE, CYAN, MAGENTA, PINK,
LIGHT_GRAY, DARK_GREEN, DARK_BLUE)

Standard color definitions that are included in the codeair library from
the colors module.

pixels.set(num, color)
pixels.set(0, RED)

Set a pixel LED to a specific color
In this example, pixel 0 is set to RED

pixels.set(0, BLACK) Turn off a pixel LED. Here, color names are in ALL CAPS because they
are included in the pre-defined COLOR_LIST.

for n in range(8): For loop that starts at 0 and goes up to but not including the ending
value. In this example, the iteration would be 0, 1, 2, 3, 4, 5, 6 and 7.

Loop for turning pixels red, then green, then blue.

pixels.set(TOP_FRONT_LEFT, RED) Pixels can be designated with a number or constant for position:
BOTTOM_FRONT_LEFT, BOTTOM_FRONT_RIGHT,
BOTTOM_REAR_LEFT, BOTTOM_REAR_RIGHT, TOP_FRONT_LEFT,
TOP_FRONT_RIGHT, TOP_REAR_RIGHT, BOTTOM_REAR_RIGHT

pixels.fill(WHITE, brightness=50) Turns all 8 pixels WHITE at brightness 50.
This code is much shorter than turning on all 8 pixels individually.

sleep(1.0)​
pixels.fill(WHITE, brightness=50)​
sleep(0.02)

Strobe

Mission 4 – Flight Safety

buttons.was_pressed(BTN_0) Checks to see if B0 was pressed since the last check.

break Breaks out of the nearest enclosing loop

if buttons.was_pressed(BTN_0):​
 break

If statement (branching) that checks for a button press. ​
buttons.was_pressed(BTN_0) is either True or False.

while True:​
 if buttons.was_pressed(BTN_0):​
 break

If statement in an infinite loop. The code waits for a button press
before moving to the next line of code.

pixels.fill(YELLOW) Sets all 8 pixels to YELLOW (built-in color)

pixels.off() Turn off all 8 pixels

sleep(0.1)​
buttons.was_pressed()

Debounce the buttons.
This line of code resets both buttons!

from flight import * Imports the flight module so you can use built-in functions, like
motor_test()

motor_test(True)
motor_test(False)

Start / stop a motor test that spins the motors but not fast enough to lift
off.

def button_arm(): Function definition. The indented block below is the code of the
function. A function definition always has () for parameters, even if
none are given.

return do_launch Returns (sends) data from the function back to the code that called it. A
return ends the function.

if button_arm(): Call the function button_arm(), which returns a True or False value

set_param(‘motorPowerSet.m2’, 30000) Set motor (m2) power (30000)

set_param(‘motorPowerSet.enable’, 1) Enable power to the motors

set_param(‘motorPowerSet.enable’, 0) Disable power to the motors

Mission 5 - Hovering Flight

‘’’This is a docstring’’’ Document string that should go at the top of any module

fly.take_off(height_meters) Ascend to given height altitude

fly.steady(seconds) Hover, allows code to pause while keeping the flight controller running

fly.land() Descend to the floor

fly.forward(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.back(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.left(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.right(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.up(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.down(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

get_data(RANGERS) Returns the (forward, up, down) distance in millimeters

if up < too_close:
 # sound alarm

If statement with a condition

fwd, up, down = get_data(RANGERS) Unpack the data from the rangers from the three values in the tuple to
three variables

Algorithm for polling with a blocking function.
In this example, timeout is a parameter that receives seconds from an
argument. The polling will happen ten times per second.

speaker.beep(400, 0) Causes the beep to play continuously. Requires speaker.off() to stop
the beep.

count = count + 1 Incrementing or updating a variable

leds.set_mask(0, 0) Turn off all the blue LEDs

fly.start_forward() Non-blocking function that starts moving forward at the default velocity
and returns immediately so the next instruction can be executed

fly.stop() Stop any motion and hover

fly.turn_left(degrees) A blocking function that turns the drone degrees left

if count == 8: Checks if count is the same as 8. If it is, a branch of code is executed.

Mission 6 - Navigate

dx, dy = get_data(FLOW) Read data from the flow sensor; returns the change in x direction and
change in y direction

print(x, y) A simple print statement that converts data to strings and displays
them on the console

print(“Flow Sensor Output”) Print a string text on the console

print(f”x={x}, y={y}”) F-string with replacement fields in curly braces

abs(x) Returns the absolute value of x

vbatt = power.battery_voltage(10) Read battery voltage, average 10 samples

amps = power.charger_current() Read charging current when connected with USB

usb_connected = power.is_usb() Returns True if currently powered by USB

value = 0b1001 Set the value to 9 using binary

leds.set_mask(255, 50) Set BYTE LEDs to 255 (on) with brightness = 50

leds.set_mask(0b10101010, 50) Set BYTE LEDs using binary

If __name__ == ‘__main__’: Detects when this program is being run as the “main program” instead
of an import

try: A block of code that executes when no error occurs, or until an error
occurs.

except: A block of code that lets your program respond to an error without
crashing.

